PC 3-5

Students will identify x and y intercept	Students will identify x and y intercepts, vertical asymptotes, and holes in the graph of a rational function.					
A rational function $R(x)$ is a function that can be		Example of Rationa	al Non-Examples of Rational			
expressed as a guotient of two polyno	omials. Rational	Functions:	Functions:			
functions can have x- and y- intercept	s like any other					
function, and they very often have sev	veral horizontal,					
vertical, or oblique (slanted) asymptot						
finding all of these characteristics alge	braically and					
using them to construct a careful grap	h.					
Find the x-intercepts:	Find the y-	intercepts:	Graph your findings:			
$3x^2 - 13x - 10$	$3x^2$	-13x - 10				
$f(x) = \frac{1}{x^2 - x - 6}$	$f(x) = \frac{1}{x}$	$x^2 - x - 6$				
For each rational	function below, find	d the x and y interce	epts algebraically.			
$R(x) = \frac{x+1}{x+1}$	$R(x) = \frac{x^2 - 4x + 3}{x^2 - 4x + 3}$		$R(x) = \frac{x^3 - 2x}{x}$			
$x^{2} + x - 2$	$x^{2} + 7x - 4$		$R(x) = \frac{1}{5x^2 - x - 4}$			
$\frac{1}{2}$	$p(x) = x^2 - 12$		$B(x) = 5x^2 + 6x + 1$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			
$R(x) = \frac{x^2 - 12x + 20}{3x^2 - 5x - 10}$	$R(x) = \frac{x^2 - 12}{x + 3}$		$R(x) = \frac{5x^2 + 6x + 1}{x + 3}$			

Glue Goes Here

PC 3-5 THE SPECIAL CASE

Students will understand the special case in which a hole in the graph is caused by a repeated factor.				
Although finding the vertical asymptotes means investigating the denominator, there are cases where examining the numerator is necessary. If the numerator and the denominator both have the same factor, a hole in the graph (an undefined x-value) occurs.	Example: $g(x) = \frac{x^2 - 4x - 5}{x^2 - x - 20}$	The graph of $g(x) = \frac{x^2 - 4x - 5}{x^2 - x - 20}$		
In addition to the hole in the graph, the x-intercepts are also changed. Normally, the graph of $g(x)$ would have x-intercepts of (-1,0) and (5,0). Instead, we can see from the graph the x-value of 5 has been eliminated. Proceed with caution when determining characteristics of				

a rational function especially when a repeated factor occurs.

PC 3-5 THE SPECIAL CASE

Students will understand the special case in which a hole in the graph is caused by a repeated factor.				
Although finding the vertical asymptotes means investigating the denominator, there	Example: $g(x) = \frac{x^2 - 4x - 5}{x^2 - x - 20}$	The graph of $g(x) = rac{x^2 - 4x - 5}{x^2 - x - 20}$		
are cases where examining the numerator is necessary. If the numerator and the denominator both have the same factor, a hole in the graph (an undefined x-value) occurs.				
In addition to the hole in the graph, the x-intercepts are also changed. Normally, the graph of $g(x)$ would have x-intercepts of (-1,0) and				
(5,0). Instead, we can see from the graph the x-value of 5 has been eliminated. Proceed with caution when determining characteristics of a rational function especially when a repeated factor occurs.				

PC 3-5 THE SPECIAL CASE

Students will understand the special case in which a hole in the graph is caused by a repeated factor.				
Students will understand t Although finding the vertical asymptotes means investigating the denominator, there are cases where examining the numerator is necessary. If the numerator and the denominator both have the same factor, a hole in the graph (an undefined x-value) occurs.	he special case in which a hole in the graph is c Example: $g(x) = \frac{x^2 - 4x - 5}{x^2 - x - 20}$	The graph of $g(x) = \frac{x^2 - 4x - 5}{x^2 - x - 20}$		
In addition to the hole in the graph, the x-intercepts are also changed. Normally, the graph of $g(x)$ would have x-intercepts of (-1,0) and				
(5,0). Instead, we can see from the graph the x-value of 5 has been eliminated. Proceed with caution when determining characteristics of				
a rational function especially when a repeated factor occurs.				