Graph these parametric equations by filling out the table. Let $0 \le t \le 2\pi$.

1. $\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases}$ 2. $\begin{cases} x(t) = 3\cos(t) \\ y(t) = 3\sin(t) \end{cases}$

1	$x(t) = \cos(t)$ $y(t) = \sin(t)$	t)
1.	$v(t) = \sin \theta$	(t)

t	x(t)	y(t)
0		

		У		
	1			
				×
-1			1	<u> </u>
	1			
	-1			

2.
$$\begin{cases} x(t) = 3\cos(t) \\ y(t) = 3\sin(t) \end{cases}$$

t	x(t)	y(t)
0		
	↑ y	

2	$(x(t) = 5 + 3\cos(t))$ $(y(t) = -2 + 3\sin(t))$
Э.	$y(t) = -2 + 3\sin(t)$

t	x(t)	y(t)
0		
	↑ y	

Write the equations for each of the following as both parametric equations and rectangular equations.

7. Given the parametric equation, write
as an implicit equation.

$$\begin{cases} x(t) = t - 4 \\ y(t) = t^2 \end{cases}$$

$$\begin{cases} x(t) = t^2 \\ y(t) = 3t + 1 \end{cases}$$

$$\begin{cases} x(t) = t^2 + 5 \\ y(t) = 2t - 1 \end{cases}$$

10. a) Graph the parametric equation.

$$\begin{cases} x(t) = 3 + 2\cos(t) \\ y(t) = -2 + 4\sin(t) \\ 0 \le t \le 2\pi \end{cases}$$

b) Write the rectangular equation of the graph.

11. a) Graph the parametric equation.

$$\begin{cases} x(t) = -1 + 4\cos(t) \\ y(t) = 2 + 3\sin(t) \\ 0 \le t \le 2\pi \end{cases}$$

b) Write the rectangular equation of the graph.

12. a) Graph the parametric equation.

$$\begin{cases} x(t) = -4 + 5\cos(t) \\ y(t) = 3 + 5\sin(t) \\ 0 \le t \le 2\pi \end{cases}$$

b) Write the rectangular equation of the graph.

13. Graph the parametric equation on the interval $0 \le t \le 4\pi$.

$$\begin{cases} x(t) = t \end{cases}$$

$$\begin{cases} y(t) = 2\cos(t) + 1 \end{cases}$$