ame: n. 5 Test (Analytic Trigonometry) [72 pts]	Period: Show all work.	Practice Test (3)
stablish the identity. [5 pts]	Show an work.	Tractice Test (5)
$\cos \theta - \cot \theta = \frac{\sin \theta}{1 + \cos \theta}$		
$1+\cos \theta$		
stablish the identity. [7 pts]		
$2)\frac{1-\cot^2\theta}{1+\cot^2\theta} + 2\cos^2\theta = 1$		
17000 0		

3) $sec^2\theta = 3sec \theta + 4$	$4) 3cot^2(2\theta) = 3$
E) Draw a reference triangle given the fallerwing.	6) Draw a reference triangle given the fellowing.
5) Draw a reference triangle given the following:[5 pts]	6) Draw a reference triangle given the following:[5 pts]
$\sin \theta = -\frac{8}{12} \tan \theta < 0$	$tan^{-1}\left(-\frac{2}{7}\right)$
$\sin \theta = -\frac{1}{12} \tan \theta < 0$	$\left(-\frac{7}{7}\right)$
((()	(10)
7) Find the exact value of the expression $sin\left(sin^{-1}\left(\frac{4}{5}\right)\right)$	$+ cos^{-1} \left(-\frac{12}{13} \right)$. [8 pts]
	5,)

Solve each equation for θ on the interval $[0, 2\pi]$. [7 points each]

Use the reference triangle to the right on problems 8 and 9. [7 pts each]	3 -8
8) sec(2θ)	9) tan(2θ)
10) Use a half-angle formula to find the exact value of the expression. [7 pts]	11) Use a half-angle formula to find the exact value of the expression. [7 pts]
$cos\left(\frac{7\pi}{12}\right)$	$\cot\left(\frac{13\pi}{12}\right)$